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Abstract
1.	 Assessing the state and trend of biodiversity in the face of anthropogenic threats 
requires large‐scale and long‐time monitoring, for which new recording methods 
offer interesting possibilities. Reduced costs and a huge increase in storage capac-
ity of acoustic recorders have resulted in an exponential use of passive acoustic 
monitoring (PAM) on a wide range of animal groups in recent years. PAM has led 
to a rapid growth in the quantity of acoustic data, making manual identification 
increasingly time‐consuming. Therefore, software detecting sound events, ex-
tracting numerous features and automatically identifying species have been de-
veloped. However, automated identification generates identification errors, which 
could influence analyses which look at the ecological response of species. Taking 
the case of bats for which PAM constitutes an efficient tool, we propose a cau-
tious method to account for errors in acoustic identifications of any taxa without 
excessive manual checking of recordings.

2.	 We propose to check a representative sample of the outputs of a software com-
monly used in acoustic surveys (Tadarida), to model the identification success 
probability of 10 species and two species groups as a function of the confidence 
score provided for each automated identification. Using this relationship, we then 
investigated the effect of setting different false positive tolerances (FPTs), from 
a 50% to 10% false positive rate, above which data are discarded, by repeating a 
large‐scale analysis of bat response to environmental variables and checking for 
consistency in the results.

3.	 Considering estimates, standard errors and significance of species response to 
environmental variables, the main changes occurred between the naive (i.e. raw 
data) and robust analyses (i.e. using FPTs). Responses were highly stable between 
FPTs.
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1  | INTRODUC TION

With few exceptions, the rate of biodiversity loss does not ap-
pear to be slowing down (Butchart et al., 2010). In 2010, the 10th 
Conference of Parties to the Convention on Biological Diversity ad-
opted a new 2011–2020 global Strategic Plan for Biodiversity, and 
in turn, the European Union launched a new Biodiversity Strategy 
(2011/2307). This strategy aims to halt biodiversity loss and the 
degradation of ecosystem services by 2020. Such objectives require 
large‐scale and long‐time studies using adapted monitoring meth-
ods for surveying and understanding biodiversity changes (Fisher, 
Frank, & Leggett, 2010) in response to anthropogenic pressures and 
environmental policies. The implementation of such studies is highly 
constrained by the time and cost induced. Interestingly, the develop-
ment of new recording methods, such as passive acoustic monitor-
ing (PAM), offers interesting possibilities and is taking an increasing 
place in monitoring (Gibb, Browning, Glover‐Kapfer, & Jones, 2018).

The reduced costs of acoustic recorders and the huge increase in 
storage capacity have resulted in an exponential increase in the use 
of PAM on a very wide range of species groups within a few years (e.g. 
Froidevaux, Zellweger, Bollmann, & Obrist, 2014; Frommolt, 2017; 
Jeliazkov et  al., 2016; Kalan et  al., 2015; Nowacek, Christiansen, 
Bejder, Goldbogen, & Friedlaender, 2016; Stahlschmidt & Brühl, 
2012). Such approaches are already widely used by researchers 
as well as by people working for environmental consultancies and 
government agencies for various biodiversity evaluations (Adams, 
Jantzen, Hamilton, & Fenton, 2012). PAM can be particularly use-
ful to carry out surveys on cryptic taxa such as nocturnal fauna 
(Delport, Kemp, & Ferguson, 2002; Jeliazkov et al., 2016; Newson, 
Evans, & Gillings, 2015), and to monitor pristine habitats which are 
otherwise difficult to access and survey by other approaches (Gasc, 
Sueur, Pavoine, Pellens, & Grandcolas, 2013). PAM is also mobilized 
in citizen science programs, for which it is an efficient tool for the im-
plementation of large‐scale biodiversity monitoring (Newson et al., 
2015; Jeliazkov et al., 2016; Kerbiriou, Azam et al., 2018; Penone, 
Kerbiriou, Julien, Marmet, & Le Viol, 2018).

Despite rapid and exciting developments in acoustic monitoring, 
there have been substantial challenges in developing this technology 

into a cost‐effective, scalable monitoring tool. Perhaps the biggest 
and most complex issue facing acoustic monitoring has been the ob-
jective and statistical taxonomic identification of bioacoustic signals. 
With the arrival on the market of a new generation of affordable 
acoustic recorders, which allow for continuous recordings over sev-
eral days, such volumes of acoustic data cannot be processed manu-
ally (Bas, Bas, & Julien, 2017; Newson et al., 2015).

In parallel to the development of PAM, several methods for de-
tecting sound events, extracting numerous features and automati-
cally identifying species have been developed (Adams et al., 2012; 
Bas et al., 2017; Britzke, Duchamp, Murray, Swihart, & Robbins, 2011; 
Ovaskainen, Moliterno de Camargo, & Somervuo, 2018; Parsons & 
Jones, 2000). However, automated identification software has been 
criticized due to significant error rates, suggesting cautious and lim-
ited use (Russo & Voigt, 2016; Rydell, Nyman, Eklöf, Jones, & Russo, 
2017), which heavily reduces the advantages of automated algo-
rithms. Nonetheless, authors have highlighted the potential for com-
bining automated classifiers with manual validation to help overcome 
error risks associated with automated identification, and so saving 
a huge amount of work in reducing the extent of manual checking 
required (López‐Baucells et al., 2019). Moreover, most available soft-
ware provides confidence scores associated with each automated 
identification in the form of probabilities or other numerical indexes 
(Obrist, Boesch, & Fluckiger, 2004; Waters & Barlow, 2013), which 
unlike the error rate is not dependent of the relative abundance of 
the species. The confidence scores provided by software aim to be 
an indicator of the true success probabilities of automated identi-
fications, and are strongly species‐dependant. There is thus an 
implicit relationship between the error rate and confidence scores 
and most software manuals advocate using confidence thresholds 
below which data should be discarded to minimize the error rate, 
for example Tadarida (Bas et al., 2017), SonoChiro (Biotope, 2013) 
and BatClassify (Scott & Altringham, 2017). Regardless of the soft-
ware used, the relationship between the error rate and confidence 
scores is an important part of the automated identification perfor-
mance, yet it has never been directly assessed in previous meth-
odological studies (Fritsch & Bruckner, 2014; Rydell et  al., 2017). 
Consequently, the level at which confidence thresholds should be 

4.	 We conclude it was essential to, at least, remove data above 50% FPT to mini-
mize false positives. We recommend systematically checking the consistency of 
responses for at least two contrasting FPTs (e.g. 50% and 10%), in order to ensure 
robustness, and only going on to conclusive interpretation when these are consist-
ent. This study provides a huge saving of time for manual checking, which will facil-
itate the improvement in large‐scale monitoring, and ultimately our understanding 
of ecological responses.
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set is unclear to most users, which has limited the use of automated 
identification in ecological studies. A threshold that is too cautious 
could lead to high‐generated false negative rates (i.e. by discarding 
a large proportion of data containing true positives below a given 
confidence score), which could result in a lack of statistical power. 
In contrast, a threshold that is not cautious enough could lead to 
high false positive rates (i.e. fails in automated identifications), par-
ticularly through the inclusion of records of species which are most 
similar acoustically, which involve statistical noise. Moreover, errors 
(generated false negative rates or false positive rates) could also be 
spatially clustered by environmental conditions that alter the quality 
of the signal (Denzinger & Schnitzler, 2013), which potentially induce 
statistical biases in relation with confidence measure provided by 
the software. False positive rates and generated false negative rates 
thus induce different caveats for which there is not a unique way to 
set confidence thresholds. Given the wide range of taxa for which 
PAM is increasingly being used, there is a need to account for these 
caveats using a method generalizable to any acoustically surveyed 
taxa.

In this study, we propose a method for assessing the effect of 
using confidence thresholds in acoustic automated identification on 
the detection of species responses to environmental variables. This 
method can be applied to any acoustic taxa for which automated 
identification software and acoustic signature knowledge are al-
ready developed, and where confidence scores are provided. Taking 
the case of bats, we first manually checked a representative sample 
of a large number of bat recordings identified using an automated 
identification software (Tadarida; Bas et al., 2017) commonly used 
in bat studies (Barré, Le Viol, Bas, Julliard, & Kerbiriou, 2018; Barré, 
Le Viol, Julliard, Chiron, & Kerbiriou, 2017; Claireau et  al., 2019; 
Pauwels et  al., 2019; Pinaud, Claireau, Leuchtmann, & Kerbiriou, 
2018). Using this sample, we then modelled the identification suc-
cess for 10 species and two species groups of bats in relation to the 
confidence score provided by the software. This allowed us to de-
fine the minimum confidence score needed to ensure a given false 
positive tolerance (FPT). We then examined how setting different 
FPTs, from 50% to 10% maximum false positive rate, above which 
data are discarded, may affect a statistical inference by repeating a 
large‐scale analysis of the response of species and species groups 
activity to five environmental variables, and looking at consistency 
of the results among FPTs.

2  | MATERIAL S AND METHODS

2.1 | Bat survey

We used an acoustic dataset collected previously to study the ef-
fect of wind turbines on bat activity (Barré et al., 2018) because it 
was based on a random sampling design with high variability and 
no confounding effects in terms of environmental variables (Figure 
S1). The following environmental variables are known as good pre-
dictors of bat activity: type of site that is, hedgerow versus open 
area habitat located at an average of 86 m (SD: 70 m) away from any 

hedgerow (Lacoeuilhe, Machon, Julien, & Kerbiriou, 2016; Verboom 
& Huitema, 1997), the distance in meters to a forest (M  =  700, 
SD = 506; Boughey, Lake, Haysom, & Dolman, 2011; Frey‐Ehrenbold, 
Bontadina, Arlettaz, & Obrist, 2013), the distance to an urban area 
(M = 335, SD = 170; Azam, Le Viol, Julien, Bas, & Kerbiriou, 2016), the 
distance to a wetland (M = 579, SD = 363; Sirami, Jacobs, & Cumming, 
2013; Santos, Rodrigues, Jones, & Rebelo, 2013) and the total 
length of hedgerows in meters within a 1,000 m radius (M = 3,439, 
SD = 1,622; Verboom & Huitema, 1997; Lacoeuilhe et al., 2016). The 
latter four variables presented important environmental variability, 
and a similar gradient between sites located close to hedgerows and 
those in open areas (Figure S1).

Bats were recorded at 337 sites (one complete night per site, 
with 207 sites close to hedgerows and 130 sites in open area) in 
northwest France (Figure  1) dominated by agriculture (82%) and 
forest (11%) areas. Recordings were carried out over 23 complete 
nights, recording from 30 min before sunset until 30 min after sun-
rise, from 7 September to 8 October 2016.

We simultaneously sampled 11–15 survey sites per night sepa-
rated by at least 300 m (Figure 1). Echolocation calls were recorded 
using one automatic acoustic recorder per site survey (Song Meter 
SM2Bat+, Wildlife Acoustics Inc., Concord, MA, USA). The detectors 
automatically recorded all ultrasounds using predefined settings as 
recommended by the French bat monitoring program ‘Vigie‐Chiro’ 
(trigger level set to 6 dB Signal Noise Ratio and set to continue re-
cording until 2.0 s after last trigger event, 384 kHz sampling rate; 
for further details see Azam et al., 2018; Barré et al., 2018; Claireau 
et al., 2019; Pauwels et al., 2019). Whilst continuous recording is typ-
ically used for monitoring birds and several other species groups, 
for bats which echolocate at high frequency, and so produce heavy 
sound files, it is necessary to use triggered recording, to be able to 
manage and store the data and process the recordings. In addition, 
these trigger settings are very sensitive (6 dB of signal‐to‐noise ratio) 
and detect the majority of bats which would have been detected 
if recording were continuous. As recommended by Millon, Julien, 
Julliard, and Kerbiriou (2015), Kerbiriou, Azam et  al. (2018) and 
Kerbiriou, Bas et al. (2018), we retained one bat pass per 5‐s interval, 
which is the mean duration of all bat species passes.

2.2 | Step 1: manual checking of a subset of the data

The identification process performed in the first step was divided 
in two sub‐steps (Figure 1). In the first sub‐step, echolocation calls 
were detected and classified to the closest taxonomic level using 
the Tadarida software (Bas et al., 2017) (hereafter named as pri-
mary identification), which assigns a species and confidence score 
(continuous values between 0 and 1) to each recorded bat pass 
(212,347 in total). In the second sub‐step, we selected a repre-
sentative sample by a stratified random sampling of 25 primary 
identifications for each 0.1 class of confidence score (i.e. 10 classes 
in total) for each species and groups for manual checking, except 
for Rhinolophus species for which all identifications were selected 
due to their low number. We performed a double manual checking 
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(KB and YB) on this stratified random selection of 1,910 bat passes 
(hereafter named as checked dataset or manual checking), using 
BatSound© software (Pettersson Elektronik AB, Sweden) and 
Syrinx software (John Burt, Seattle, WA, USA) for 10 species and 
two groups (Myotis spp. and Plecotus spp.) (Table 1), by visual in-
spection and measurement of discriminating characteristics of 
calls on spectrograms (Barataud, 2015). Species groups were used 
for genera within which species are difficult to identify from one 
another, except for one species of Myotis spp., Myotis nattereri, for 
which echolocation calls are very characteristic (Barataud, 2015; 
Obrist et al., 2004). We made the choice to separate two species 
which are commonly grouped because of their frequency overlap: 
Pipistrellus kuhlii and Pipistrellus nathusii. We manually separated 

these species by combining measurements of energy peak, final 
frequency, call duration, bandwidth and time between calls as dis-
cussed in Barataud (2015). In relatively open habitats like in our 
study, P. nathusii emit very commonly very short bandwidth, and 
higher frequencies than P. kuhlii when emitting such kind of calls 
(i.e. quasi‐constant frequency). P. kuhlii very often use a short fre-
quency modulation at the end of the call and this is very rare in P. 
nathusii calls. Finally, we randomly checked 500 sound files identi-
fied as not containing bats to assess missed bat events.

We assumed that manual checking provided the most conserva-
tive species assignations, which allowed us to accurately assign to 
each primary identification a true positive (i.e. a correct automated 
identification of the species), a false positive (i.e. a fail in automated 

F I G U R E  1  Schematic and 
chronological representation of the steps 
used to study the relationship between 
automated identification errors in acoustic 
data and the detected relationship 
between bat activity and environmental 
variables
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identification of the species) or a false negative (i.e. defined in this 
study as a pass of the species automatically identified as another 
one) in the checked dataset.

The efficiency of the automated identification may be spa-
tially heterogeneous due to habitat structure (Denzinger & 
Schnitzler, 2013). We tested for the dependence of false posi-
tives (i.e. a binomial response variable: failure or success of the 
automated identification) and false negative ones (i.e. a binomial 
response variable: automatically identified as another species 
or correct identification) on the five tested environmental vari-
ables. We performed generalized linear mixed models (binomial 
response variables; logit link) with the environmental variables as 
explanatory variables, using date as random effect to control for 
inter‐night variations.

2.3 | Step 2: false positive rate modelling

The success probability, defined as the success or failure of the au-
tomated species identification, was used as the response variable to 
perform generalized linear models (binomial response variable; logit 
link) using the confidence score provided by the automated identifi-
cation software as the explanatory variable (see step 2 in Figures 1 
and 2). Using these models, we could predict the confidence score 
corresponding to a given success probability of the automated iden-
tification. Thus, predicted confidence score constitutes the minimum 
one required to ensure a given false positive tolerance (FPT, i.e. one 
minus the success probability) in the whole dataset (i.e. including all 
checked and non‐checked primary identifications; Figure 1; Table 2). 
We selected all FPTs starting from the highest acceptable one (0.5, 
i.e. a maximum false positive rate of 50%, which expected to give an 
approximately balanced number of false negatives and false posi-
tives) to the lower one (0.1, i.e. a maximum false positive rate of 10%) 
by 0.1 classes (i.e. 0.5, 0.4, 0.3, 0.2 and 0.1 FPTs).

2.4 | Step 3: data thresholding and consistency of 
model outputs regarding false positive rate

After predicting the required confidence score to ensure a given 
FPT in the automated identification, we filtered the whole dataset 
on the five predicted confidence scores corresponding to the five 
FPT (see step 3 in Figures  1 and 3; Table  2). This allowed us to 
calculate for each FPT in the whole dataset, the remaining number 
of bat passes, occurrences and an estimation of false positive rate 
and generated false negative rate by reducing the FPT (Table 2). In 
order to assess the trade‐off between false positive rates and gen-
erated false negative rates generated by reducing FPT, for each 
FPT, we estimated for the whole dataset the false positive rate 
(i.e. incorrect primary identifications) and generated false negative 
rate (i.e. as a consequence of discarding true positives because of 
reducing FPT) from equations used to model the false positive rate 
in step 2. For each bat pass BP of a given species S, we first com-
puted the probability of there being a true positive (TP, equation 1) 
and a false positive (FP, equation 2) as follows: 

 

 where a corresponds to the estimated parameter from the logistic 
regression between manual checking (i.e. the response variable: suc-
cess/fail in automated identification; step 2 in Figures 1 and 2) with 
the confidence score provided by the software (i.e. the explanatory 
variable), x is the confidence score of the bat pass provided by the 
automated identification software and b is the intercept of the logis-
tic regression (Figure S2).

This allowed us to estimate the generated false negative rate 
(FNR, Equation 3) for a given species S and a given threshold of false 
positive tolerance FPT in the whole dataset, by averaging all prob-
abilities to have a true positive TP from bat passes BP discarded by 
reducing FPT (i.e. between the targeted FPT and the maximum FPT 
of 1) as follows: 

 where n is the total number of bat passes BP of the species S.
We were also able to estimate the false positive rate (FPR, 

Equation 4) for a given species S and a given threshold of false pos-
itive tolerance FPT in the whole dataset, by averaging probabilities 
to have a false positive FP from bat passes BP between the minimum 
FPT (i.e. zero) and the targeted FPT as follows: 

where n is the number of bat passes BP between the minimum FPT 
(i.e. zero tolerance of false positives) and the targeted FPT of a given 
species S.

Finally, we evaluated the automated classification efficiency by 
drawing receiver operating characteristic (ROC) curves between 
confidence scores of presences and absences of each species, and 
computing area under curve (AUC) with the R package prroc (Figure 
S3).

For each species and species groups, we then performed gen-
eralized linear mixed models (GLMM, R package lme4) using as a re-
sponse variable the number of bat passes filtered on one of the five 
FPTs or the raw number of primary identifications without thresh-
olding (i.e. whole dataset) (six GLMMs in total performed on 0.5,0.4, 
0.3, 0.2, 0.1 FPTs and on the whole dataset). Environmental variables 
were included as fixed effects, among which quantitative ones were 
scaled. According to the sampling design (i.e. 11–15 simultaneous 
recording sites per night), we included date as a random effect to 
control for inter‐night variation in weather conditions and landscape 
context. We applied a Poisson error or a Negative binomial error 
distribution to GLMMs in order to minimize issues in the overdis-
persion ratio in models (i.e. as close as possible to 1; Zuur, Ieno, 
Walker, Saveliev, & Smith, 2009). All explanatory variables showed 

(1)TPBP,S=
exp (ax+b)

1+exp(ax+b)
,

(2)FPBP,S=1−TPBP,S,

(3)FNRS,FPT=

∑FPT=1

FPT
TPBP,S

nBP,S

,

(4)FPRS,FPT=

∑FPT

FPT=0
FPBP,S

nBP,S,FPT

,
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F I G U R E  2  Logistic regressions between the success probability and the confidence score of the automated identification. The success 
probability was predicted from a subset manually checked assigning a success or a failure in automated identifications. Horizontal dotted 
lines show success probabilities in automated identification used for thresholding (i.e. false positive tolerances: 0.5, 0.4, 0.3, 0.2 and 0.1) to 
remove data in the total dataset below the corresponding confidence scores (vertical lines)



     |  9Methods in Ecology and Evolu
onBARRÉ et al.

TA B L E  2  Minimum confidence scores needed to ensure false positive tolerances (step 2 in Figure 1), associated changes in the number of 
bat passes, the occurrence (presence rate among sites), the estimated false positive rate and the generated false negative rate estimated for 
the whole dataset (212,347 bat passes; step 3 in Figure 1)

Species

False positive tolerance

Raw data 0.5 0.4 0.3 0.2 0.1

Barbastella barbastellus

Confidence score / 0.119 0.133 0.148 0.167 0.195

No. of bat passes 5,835 5,828 5,824 5,822 5,809 5,787

Occurrences 0.694 0.694 0.694 0.694 0.694 0.694

Estimated false positive rate 0.003 0.002 0.002 0.002 0.001 0.001

Estimated false negative rate 0 <0.001 <0.001 0.001 0.003 0.006

Eptesicus serotinus

Confidence score / 0.180 0.200 0.221 0.246 0.285

No. of bat passes 1,343 1,297 1,287 1,273 1,255 1,205

Occurrences 0.373 0.339 0.336 0.333 0.324 0.312

Estimated false positive rate 0.044 0.022 0.019 0.015 0.012 0.006

Estimated false negative rate 0 0.011 0.016 0.023 0.031 0.065

Myotis nattereri

Confidence score / 0.229 0.271 0.317 0.373 0.458

No. of bat passes 1,986 1,759 1,659 1,562 1,436 1,239

Occurrences 0.688 0.648 0.624 0.609 0.578 0.529

Estimated false positive rate 0.136 0.081 0.064 0.049 0.034 0.021

Estimated false negative rate 0 0.036 0.059 0.087 0.132 0.199

Myotis spp.

Confidence score / 0.212 0.250 0.291 0.341 0.416

No. of bat passes 6,428 5,783 5,483 5,135 4,747 4,173

Occurrences 0.798 0.792 0.786 0.774 0.765 0.716

Estimated false positive rate 0.145 0.092 0.073 0.054 0.038 0.024

Estimated false negative rate 0 0.036 0.062 0.099 0.145 0.219

Nyctalus leisleri

Confidence score / 0.286 0.342 0.402 0.476 0.587

No. of bat passes 153 67 43 28 22 12

Occurrences 0.211 0.138 0.104 0.070 0.055 0.031

Estimated false positive rate 0.502 0.305 0.222 0.149 0.115 0.075

Estimated false negative rate 0 0.193 0.279 0.337 0.370 0.425

Nyctalus noctula

Confidence score / 0.507 0.527 0.548 0.574 0.613

No. of bat passes 395 61 50 41 29 22

Occurrences 0.220 0.080 0.067 0.058 0.046 0.040

Estimated false positive rate 0.850 0.212 0.158 0.120 0.066 0.042

Estimated false negative rate 0 0.029 0.044 0.054 0.082 0.097

Pipistrellus kuhlii

Confidence score / 0.164 0.216 0.272 0.341 0.444

No. of bat passes 28,588 28,456 28,305 28,077 27,737 26,854

Occurrences 0.899 0.899 0.890 0.884 0.881 0.875

Estimated false positive rate 0.033 0.030 0.028 0.026 0.023 0.019

Estimated false negative rate 0 0.002 0.005 0.010 0.019 0.045

(Continues)
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a variance inflation factor value under 1.5, meaning there was no 
strong evidence of multicollinearity (Chatterjee & Hadi, 2006).

We then compared the estimates of each environmental variable 
among fitted models to check the consistency in the response of 
bats to environmental variables in relation to the different FPTs.

3  | RESULTS

3.1 | Automated identification and manual checking

Over the 23 nights sampled, among the 212,347 bat passes re-
corded, 167,504 (79%) were assigned to Pipistrellus pipistrellus, 
28,589 (13%) to Pipistrellus kuhlii, 6,430 (3%) to Myotis spp. and 
5,835 (3%) to Barbastella barbastellus (Table 1). A stratified random 
sample of 1,910 bat passes were manually checked (Table 1). False 

positive rates varied a lot among species, from 0.0% for Rhinolophus 
ferrumequinum to 69.4% for Nyctalus noctula (Table 1). The largest 
number of errors detected in manual checks was for N. noctula con-
fused with social calls of P. pipistrellus (only one location involved) 
and non‐bat noises, and calls of Pipistrellus nathusii were confused 
with P. kuhlii, P. pipistrellus and non‐bat noises (Table S1). Concerning 
the random checking of 500 sound files identified as non‐bat by the 
software, we found that three (0.6%) contained bat events.

3.2 | Checking for environmental biases in 
identification errors

Using the dataset on which manual checks were carried out, we in-
vestigated a potential variation in automated identification errors 
due the environmental variables. The probability of these being false 

Species

False positive tolerance

Raw data 0.5 0.4 0.3 0.2 0.1

Pipistrellus nathusii

Confidence score / 0.668 0.756 0.853 0.971 /

No. of bat passes 577 101 18 0 0 0

Occurrences 0.404 0.116 0.031 0.000 0.000 0.000

Estimated false positive rate 0.623 0.437 0.370 / / /

Estimated false negative rate 0 0.275 0.355 0.377 / /

Pipistrellus pipistrellus

Confidence score / 0.000 0.000 0.000 0.000 0.096

No. of bat passes 167,503 167,503 167,503 167,503 167,503 167,502

Occurrences 0.954 0.954 0.954 0.954 0.954 0.954

Estimated false positive rate 0.007 0.007 0.007 0.007 0.007 0.007

Estimated false negative rate 0.000 0.000 0.000 0.000 0.000 0.000

Plecotus spp.

Confidence score / 0.184 0.217 0.253 0.298 0.364

No. of bat passes 1,352 1,229 1,185 1,129 1,034 909

Occurrences 0.615 0.599 0.596 0.596 0.584 0.544

Estimated false positive rate 0.128 0.079 0.065 0.051 0.034 0.019

Estimated false negative rate 0 0.034 0.053 0.080 0.131 0.211

Rhinolophus ferrumequinum

Confidence score / 0.000 0.000 0.000 0.000 0.000

No. of bat passes 41 41 41 41 41 41

Occurrences 0.046 0.046 0.046 0.046 0.046 0.046

Estimated false positive rate 0.000 0.000 0.000 0.000 0.000 0.000

Estimated false negative rate 0.000 0.000 0.000 0.000 0.000 0.000

Rhinolophus hipposideros

Confidence score / 0.385 0.398 0.411 0.427 0.452

No. of bat passes 128 117 116 116 116 113

Occurrences 0.113 0.107 0.104 0.104 0.104 0.104

Estimated false positive rate 0.078 0.011 0.007 0.007 0.007 0.003

Estimated false negative rate 0 0.018 0.022 0.022 0.022 0.199

TA B L E  2   (Continued)
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F I G U R E  3  Number of bat passes in the total dataset according to confidence scores provided by the automated identification. Vertical 
lines show the threshold below which data were removed to ensure a given false positive tolerance (from black to grey: 0.5, 0.4, 0.3, 0.2 and 
0.1)
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positives was significantly affected by only one environmental vari-
able (habitat type of survey sites: hedgerow vs. open area) and for 
only one species, N. noctula (p < 0.001; Table S2). All other environ-
mental variables were not found to affect the probability of there 
being false negatives for any species (Table S3).

3.3 | False positive rate modelling

Success and failure in automated identification assessed through 
manual checking were modelled in relation to the confidence score 
provided by the software, allowing us to predict the required con-
fidence score to ensure a given FPT (Figure 2). Confidence scores 
required to ensure FPTs (i.e. 0.5, 0.4, 0.3, 0.2 and 0.1) did not vary 
much for species such as B. barbastellus (0.12–0.20), Eptesicus seroti-
nus (0.18–0.29) and Rhinolophus hipposideros (0.39–0.45), but more 
for others, for example Nyctalus leisleri (0.29–0.59), P. kuhlii (0.16–
0.44) and Plecotus ssp. (0.18–0.36) (Table 2). In addition, these FPTs 
confidence scores were lower for B. barbastellus, E. serotinus, P. kuhlii, 
Plecotus spp. Myotis spp., and higher for P. nathusii and N. noctula 
(Table 2).

For P. pipistrellus, errors were rare thus the lowest possible con-
fidence score (0.096) corresponded to a FPT lower than 0.2. In con-
trast, for P. nathusii, the highest possible confidence score (0.971) 
corresponded to a FPT greater than 0.1, that is more than one in ten 
chance of failure (Table 2). Moreover, no errors were found in the 
sample for R. ferrumequinum, which prevented the modelling of error 
rate for this species (Table 2).

Low FPTs (i.e. removing data below a high confidence score) 
often led to an important decrease in activity measures (Table 2). 
For example, Myotis spp. and N. leisleri activity decreased by 27.8% 
and 82.1%, respectively, between 0.5 FPT and 0.1 FPT (Table 2). 
However, such high decreases in activity resulted in a little de-
crease in occurrence for these species: 6.7% for the Myotis spp. 
group and 10.7% for N. leisleri (Table 2). For other species, the ac-
tivity and occurrence were more stable across FPTs, including for 
B. barbastellus, E. serotinus, P. kuhlii, Plecotus spp., and R. hipposid-
eros (Table 2).

At the highest FPT (0.5), the estimated false positive rate was 
high (>21%) for three species (N. leisleri, N. noctula and P. nathusii), 
and very low (<5%) for six species (B. barbastellus, E. serotinus, P. 
kuhlii, P. pipistrellus, R. ferrumequinum and R. hipposideros) (Table 2). 
However, at the lowest FPT (0.1), all species showed an estimated 
false positive rate under 0.05, except for N. leisleri (0.08) and P. 
nathusii for which no data satisfied a FPT lower than 0.1 (Table 2).

Estimating the generated false negative rate (i.e. true positives 
discarded by reducing the FPT) was very low (<4%) at 0.5 FPT for 
most species except N. leisleri (0.19) and P. nathusii (0.28) (Table 2). 
This rate became more important at 0.1 FPT, with null values for P. 
pipistrellus and R. ferrumequinum; with very low values (<10%) for five 
species (B. barbastellus, E. serotinus, N. noctula, P. kuhlii and R. hip-
posideros); and with high values for N. leisleri (0.425) and P. nathusii 
(0.377) (Table 2). The average AUC from ROC curves was 0.93 (range: 
0.73–1.00; Figure S3).

3.4 | Consistency of activity patterns across error 
rate tolerance gradient

To study the influence of confidence score thresholding according 
to FPTs below which data were discarded (i.e. changes in amount of 
data, species occurrence, estimated false positive rate and estimated 
rate of generated false negative), modelling of the bat response (i.e. 
the number of bat passes according to selected FPT) to environmen-
tal variables was performed at all FPTs.

When comparing model outputs from naive (i.e. raw data) to robust 
analyses (i.e. FPTs), a loss or a gain of significance was occurred for the 
open areas versus hedgerows variable for N. leisleri, the distance to for-
est for Myotis spp. and N. leisleri, the length of hedgerows for N. leisleri 
and the distance to urban areas for N. noctula (Table 3). In addition, for 
significant variables, an inversion of the direction of the estimate for 
the open areas versus hedgerows variable occurred for N. noctula and 
P. nathusii (Table 3). In all other cases, no changes were found (Table 3).

However, we did not detect any major changes in model out-
puts between the 0.5, 0.4, 0.3, 0.2 and 0.1 FPTs for which response 
estimates and standard errors remained highly stable (Table 3). In 
only two cases, we detected a loss of significance: for N. noctula 
with FPTs lower than 0.2 and 0.3 for the distance to forests and 
the length of hedgerows variables respectively (Table 3). However, 
for this species, the open areas versus hedgerows variable remained 
significant and highly stable at all FPTs (Table 3).

All species had at least one significant habitat variable response 
irrespective of the used FPTs, except N. leisleri. Hedgerows had a 
significantly higher bat activity (i.e. number of bat passes) associated 
with them than open areas for seven species or groups (B. barbastel-
lus, M. nattereri, Myotis spp., P. kuhlii, P. pipistrellus, Plecotus spp. and 
R. hipposideros) and a significantly lower bat activity for two species 
(N. noctula and P. nathusii) (Table 3). We also found a significant neg-
ative relationship between bat activity and (a) the distance to urban 
areas variable for two species or groups (E. serotinus and Plecotus 
spp.; Table 3); (b) with the distance to forest variable for two species 
(N. noctula and R. ferrumequinum; Table 3); (c) with the distance to 
wetlands variable for R. ferrumequinum; and (d) with the length of 
hedgerows variable for N. noctula, P. pipistrellus and R. ferrumequi-
num (Table 3) but a significant positive relationship with the distance 
to wetlands variable for P. kuhlii (Table 3).

4  | DISCUSSION

This study demonstrates that automated acoustic identification 
of bats, as well as by extension all other taxa acoustically identifi-
able by software, coupled with partial manual checking and false 
positive rate modelling (i.e. semi‐automated identification; Newson 
et al., 2015), is a key tool for improving reliability of studies based 
on acoustic data. Indeed, robust ecological responses could be pro-
duced even in cases where false positive rates were so far consid-
ered too high (Rydell et al., 2017). This new and robust framework 
takes advantage of confidence scores provided by the automated 
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identification software and its ability for distinguishing true posi-
tives and false positives (Figure S3), controlling for false positive 
tolerances (FPTs), and checking for potential biases induced by iden-
tification errors.

4.1 | Using confidence thresholding

Minimum confidence scores required to ensure a given FPT accord-
ing to species exhibited low to moderate variation across the 0.5 to 
0.1 FPTs (Table 2). To investigate the effect of the automated identi-
fication errors on bat activity patterns in relation with FPTs, we stud-
ied the response of bat activity to several environmental variables 
known to impact bats. Depending on species, the most significant 
responses to environmental variables were consistent with known 
patterns of bat activity: a negative effect of open areas versus 
hedgerows and of decreasing length of hedgerows (Lacoeuilhe et al., 
2016; Verboom & Huitema, 1997), of distance to forest (Boughey 
et  al., 2011; Frey‐Ehrenbold et  al., 2013), to urban areas (Jung & 
Threlfall, 2016; Mckinney, 2005) and to distance to wetlands (Santos 
et al., 2013; Sirami et al., 2013).

A comparison of the relationship between environmental vari-
ables and bat activity between using the raw data (i.e. using the 
whole dataset regardless of the confidence score) and FPTs selected 
data (i.e. removing data above defined FPT to minimize the false 
positive rate) showed some discrepancies. We sometimes found op-
posite significant responses, for example the effect of open areas 
versus hedgerows on N. noctula and P. nathusii, when comparing 
results from raw data and FPTs (Table  3). This demonstrates that 
analyses conducted on raw automated identification data could be 
severely biased. In this respect, removing data above a 0.5 FPT (i.e. 
removing data with a low success probability) is essential, in accor-
dance with concerns expressed by Russo and Voigt (2016).

Logically these biases due to false positives mostly seem to im-
pact uncommon species which are acoustically similar to commoner 
ones. Here the most impacted species is P. nathusii which suffers 
from a high false positive rate due to the local abundance of P. kuhlii 
and P. pipistrellus (Tables 1 and 2). Consequently, an analysis con-
ducted on raw automatically identified data for this species seems to 
be driven by the response of the two other Pipistrelles.

4.2 | Assessing robustness of ecological inferences

We assessed the robustness of ecological inferences by studying 
the consistency of bat responses to environmental variables among 
FPTs. However, for P. nathusii it was not possible to ensure such a 
robustness due a lack of data from 0.4 FPT (Table 2). This framework 
thus showed that this was not possible to produce robust ecological 
inferences on this species due to a high false positive rate in this 
dataset. In addition, for N. noctula, we lost significance of the re-
sponse to the distance to the forest and the length of hedgerows 
from 0.2 and 0.3 FPTs respectively (Table  3). Such loss of signifi-
cance could be linked to a high loss of bat passes and occurrences by 
reducing the FPTs, or linked to environmental biases affecting spatial Sp
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distribution of false positive or generated false negative rates. Thus, 
given the uncertainty about the mechanism involved, it was also not 
possible to produce robust inferences for this species given high 
losses of bat passes and occurrence, and high estimated false posi-
tive rates by reducing the FPTs (Table 2).

At the other end of the spectrum, the estimated false positive 
rate was always extremely low or even zero whatever the con-
fidence score in the automated identification for P. pipistrellus 
and R. ferrumequinum (Table 1), thus not raising any problem of 
error risk.

For all nine other species or species groups, 15 of the 18 signif-
icant responses to environmental variables were robust with a high 
stability of model outputs while reducing the FPT from 0.5 to 0.1 
(Table 3). In addition, despite a decrease in bat activity measures due 
to thresholding at FPTs, the occurrence of species remained highly 
stable whilst retaining statistical power among FPTs. Our study thus 
demonstrates that using our approach many ecological inferences 
could be robust against identification errors.

4.3 | Survey recommendations and limitations

This study proposes a cautious method to account for identification 
errors in acoustic surveys aimed at studying the response of bats 
in relation to environmental variables, such as anthropogenic pres-
sures, without the need for exhaustive checking of recordings.

The FPT of 0.5 is a threshold for which false negatives and false 
positives are expected to be approximately balanced. However, 
false positives are more likely to produce biases because their rate is 
strongly driven by the activity pattern of other species. In contrast, 
the FPT of 0.1 minimizes the false positive rate, but at the cost of 
losing potentially a lot of data, so a high generated false negative rate 
by discarding true positives (Table 2). Rather than looking for a pos-
sible optimal threshold, we recommend that researchers systemati-
cally check the consistency of responses for at least two significantly 
different thresholds (e.g. 0.5 and 0.1 FPTs), in order to assess the 
robustness of the results and only going on to conclusive interpreta-
tion when these are consistent.

A lack of consistency is most likely to occur for rare species 
with very low abundance/occurrence, and for uncommon species 
which are acoustically similar to commoner ones such as P. nathusii 
here which is acoustically similar to P. kuhlii (Obrist et al., 2004). 
The efficiency of the automated identification of P. nathusii and 
N. lesleiri was lowest (AUC of 0.73 for both; Figure S3) due to par-
ticular context of the study where these species were much rarer 
than their acoustically closest relative (P. kuhlii and E. serotinus, 
respectively; Table 1). For these species, either systematic manual 
checking or an important improvement in automated identifica-
tion efficiency is needed to conduct robust analyses. However, 
our framework of error rate modelling is already sufficient to ef-
fectively identify these problematic species and should prevent 
users of automated identification to draw conclusions that are not 
robust. In addition, another prerequisite for drawing robust con-
clusions from this framework is to ensure that error types (i.e. false 

negatives and false positives) are not correlated with the variables 
tested in the study. In our study case, we only detected one signifi-
cant dependence for the open area versus hedgerows for the false 
positives of N. noctula (Table S2). For this species, automated iden-
tification was more efficient (i.e. lower number of false positives) 
for survey sites located in open areas than close to hedgerows 
where calls are more difficult to identify due to frequency mod-
ulation (Barataud, 2015; Obrist et  al., 2004). It is not surprising 
that the false positive rate of a rare species like N. noctula could be 
influenced by local habitat type because this variable is expected 
to have different effects on other species, and thus influence false 
positive rate through the relative density between N. noctula and 
other bat species. Thus, we expect a bias in the measure of activity 
towards open areas in this case. Hence, the significant positive 
response of this species to open areas compared to hedgerows 
should be considered unreliable to make any ecological inference 
(Table 3).

This method can be applied to any ecological studies with stan-
dardized sampling but, of course, cannot help for surveys where no 
error can be tolerated, for example for producing species invento-
ries for protected species, as required for environmental impact as-
sessments (Russo & Voigt, 2016). However, in this case, automated 
identification can still indicate what bat passes should be manually 
checked in order to identify species presence at the site scale, by 
selecting passes with the highest confidence scores, and thus saving 
time for the user.

Finally, the proposed method can be applied to any acoustic taxa 
for which automated identification software is developed and where 
confidence scores are provided. A crucial advantage of this method 
is that manual checking of a relatively small subset of the dataset 
(<1% in this study) is sufficient to assess error rates associated with 
species identification. This is especially true given that checking all 
data is very time‐consuming and virtually impossible for such a large 
dataset.
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