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Abstract
1.	 Assessing	the	state	and	trend	of	biodiversity	in	the	face	of	anthropogenic	threats	
requires	large‐scale	and	long‐time	monitoring,	for	which	new	recording	methods	
offer	interesting	possibilities.	Reduced	costs	and	a	huge	increase	in	storage	capac-
ity	of	acoustic	recorders	have	resulted	in	an	exponential	use	of	passive	acoustic	
monitoring	(PAM)	on	a	wide	range	of	animal	groups	in	recent	years.	PAM	has	led	
to	a	rapid	growth	in	the	quantity	of	acoustic	data,	making	manual	identification	
increasingly	 time‐consuming.	 Therefore,	 software	 detecting	 sound	 events,	 ex-
tracting	numerous	features	and	automatically	identifying	species	have	been	de-
veloped.	However,	automated	identification	generates	identification	errors,	which	
could	influence	analyses	which	look	at	the	ecological	response	of	species.	Taking	
the	case	of	bats	for	which	PAM	constitutes	an	efficient	tool,	we	propose	a	cau-
tious	method	to	account	for	errors	in	acoustic	identifications	of	any	taxa	without	
excessive	manual	checking	of	recordings.

2.	 We	propose	to	check	a	representative	sample	of	the	outputs	of	a	software	com-
monly	 used	 in	 acoustic	 surveys	 (Tadarida),	 to	model	 the	 identification	 success	
probability	of	10	species	and	two	species	groups	as	a	function	of	the	confidence	
score	provided	for	each	automated	identification.	Using	this	relationship,	we	then	
investigated	the	effect	of	setting	different	false	positive	tolerances	(FPTs),	from	
a	50%	to	10%	false	positive	rate,	above	which	data	are	discarded,	by	repeating	a	
large‐scale	analysis	of	bat	response	to	environmental	variables	and	checking	for	
consistency	in	the	results.

3.	 Considering	 estimates,	 standard	 errors	 and	 significance	 of	 species	 response	 to	
environmental	variables,	the	main	changes	occurred	between	the	naive	(i.e.	raw	
data)	and	robust	analyses	(i.e.	using	FPTs).	Responses	were	highly	stable	between	
FPTs.
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1  | INTRODUC TION

With	 few	 exceptions,	 the	 rate	 of	 biodiversity	 loss	 does	 not	 ap-
pear	to	be	slowing	down	(Butchart	et	al.,	2010).	 In	2010,	the	10th	
Conference	of	Parties	to	the	Convention	on	Biological	Diversity	ad-
opted	a	new	2011–2020	global	Strategic	Plan	for	Biodiversity,	and	
in	 turn,	 the	European	Union	 launched	a	new	Biodiversity	Strategy	
(2011/2307).	 This	 strategy	 aims	 to	 halt	 biodiversity	 loss	 and	 the	
degradation	of	ecosystem	services	by	2020.	Such	objectives	require	
large‐scale	 and	 long‐time	 studies	 using	 adapted	monitoring	meth-
ods	 for	 surveying	 and	 understanding	 biodiversity	 changes	 (Fisher,	
Frank,	&	Leggett,	2010)	in	response	to	anthropogenic	pressures	and	
environmental	policies.	The	implementation	of	such	studies	is	highly	
constrained	by	the	time	and	cost	induced.	Interestingly,	the	develop-
ment	of	new	recording	methods,	such	as	passive	acoustic	monitor-
ing	(PAM),	offers	interesting	possibilities	and	is	taking	an	increasing	
place	in	monitoring	(Gibb,	Browning,	Glover‐Kapfer,	&	Jones,	2018).

The	reduced	costs	of	acoustic	recorders	and	the	huge	increase	in	
storage	capacity	have	resulted	in	an	exponential	increase	in	the	use	
of	PAM	on	a	very	wide	range	of	species	groups	within	a	few	years	(e.g.	
Froidevaux,	Zellweger,	Bollmann,	&	Obrist,	2014;	Frommolt,	2017;	
Jeliazkov	 et	 al.,	 2016;	 Kalan	 et	 al.,	 2015;	 Nowacek,	 Christiansen,	
Bejder,	 Goldbogen,	 &	 Friedlaender,	 2016;	 Stahlschmidt	 &	 Brühl,	
2012).	 Such	 approaches	 are	 already	 widely	 used	 by	 researchers	
as	well	 as	by	people	working	 for	environmental	 consultancies	and	
government	 agencies	 for	 various	 biodiversity	 evaluations	 (Adams,	
Jantzen,	Hamilton,	&	Fenton,	2012).	PAM	can	be	particularly	use-
ful	 to	 carry	 out	 surveys	 on	 cryptic	 taxa	 such	 as	 nocturnal	 fauna	
(Delport,	Kemp,	&	Ferguson,	2002;	Jeliazkov	et	al.,	2016;	Newson,	
Evans,	&	Gillings,	2015),	and	to	monitor	pristine	habitats	which	are	
otherwise	difficult	to	access	and	survey	by	other	approaches	(Gasc,	
Sueur,	Pavoine,	Pellens,	&	Grandcolas,	2013).	PAM	is	also	mobilized	
in	citizen	science	programs,	for	which	it	is	an	efficient	tool	for	the	im-
plementation	of	large‐scale	biodiversity	monitoring	(Newson	et	al.,	
2015;	 Jeliazkov	et	al.,	2016;	Kerbiriou,	Azam	et	al.,	2018;	Penone,	
Kerbiriou,	Julien,	Marmet,	&	Le	Viol,	2018).

Despite	rapid	and	exciting	developments	in	acoustic	monitoring,	
there	have	been	substantial	challenges	in	developing	this	technology	

into	a	cost‐effective,	scalable	monitoring	tool.	Perhaps	the	biggest	
and	most	complex	issue	facing	acoustic	monitoring	has	been	the	ob-
jective	and	statistical	taxonomic	identification	of	bioacoustic	signals.	
With	 the	 arrival	 on	 the	market	 of	 a	 new	generation	of	 affordable	
acoustic	recorders,	which	allow	for	continuous	recordings	over	sev-
eral	days,	such	volumes	of	acoustic	data	cannot	be	processed	manu-
ally	(Bas,	Bas,	&	Julien,	2017;	Newson	et	al.,	2015).

In	parallel	to	the	development	of	PAM,	several	methods	for	de-
tecting	sound	events,	extracting	numerous	features	and	automati-
cally	 identifying	species	have	been	developed	(Adams	et	al.,	2012;	
Bas	et	al.,	2017;	Britzke,	Duchamp,	Murray,	Swihart,	&	Robbins,	2011;	
Ovaskainen,	Moliterno	de	Camargo,	&	Somervuo,	2018;	Parsons	&	
Jones,	2000).	However,	automated	identification	software	has	been	
criticized	due	to	significant	error	rates,	suggesting	cautious	and	lim-
ited	use	(Russo	&	Voigt,	2016;	Rydell,	Nyman,	Eklöf,	Jones,	&	Russo,	
2017),	 which	 heavily	 reduces	 the	 advantages	 of	 automated	 algo-
rithms.	Nonetheless,	authors	have	highlighted	the	potential	for	com-
bining	automated	classifiers	with	manual	validation	to	help	overcome	
error	risks	associated	with	automated	 identification,	and	so	saving	
a	huge	amount	of	work	 in	reducing	the	extent	of	manual	checking	
required	(López‐Baucells	et	al.,	2019).	Moreover,	most	available	soft-
ware	 provides	 confidence	 scores	 associated	with	 each	 automated	
identification	in	the	form	of	probabilities	or	other	numerical	indexes	
(Obrist,	Boesch,	&	Fluckiger,	2004;	Waters	&	Barlow,	2013),	which	
unlike	the	error	rate	is	not	dependent	of	the	relative	abundance	of	
the	species.	The	confidence	scores	provided	by	software	aim	to	be	
an	 indicator	of	 the	 true	 success	probabilities	of	 automated	 identi-
fications,	 and	 are	 strongly	 species‐dependant.	 There	 is	 thus	 an	
implicit	 relationship	between	the	error	 rate	and	confidence	scores	
and	most	 software	manuals	advocate	using	confidence	 thresholds	
below	which	data	 should	be	discarded	 to	minimize	 the	 error	 rate,	
for	example	Tadarida	 (Bas	et	al.,	2017),	SonoChiro	 (Biotope,	2013)	
and	BatClassify	(Scott	&	Altringham,	2017).	Regardless	of	the	soft-
ware	used,	the	relationship	between	the	error	rate	and	confidence	
scores	is	an	important	part	of	the	automated	identification	perfor-
mance,	 yet	 it	 has	 never	 been	 directly	 assessed	 in	 previous	meth-
odological	 studies	 (Fritsch	 &	 Bruckner,	 2014;	 Rydell	 et	 al.,	 2017).	
Consequently,	 the	 level	 at	which	 confidence	 thresholds	 should	be	

4.	 We	conclude	 it	was	essential	 to,	at	 least,	 remove	data	above	50%	FPT	to	mini-
mize	false	positives.	We	recommend	systematically	checking	the	consistency	of	
responses	for	at	least	two	contrasting	FPTs	(e.g.	50%	and	10%),	in	order	to	ensure	
robustness,	and	only	going	on	to	conclusive	interpretation	when	these	are	consist-
ent.	This	study	provides	a	huge	saving	of	time	for	manual	checking,	which	will	facil-
itate	the	improvement	in	large‐scale	monitoring,	and	ultimately	our	understanding	
of	ecological	responses.

K E Y W O R D S

bioacoustic,	cautious	threshold,	chiroptera,	error	rate,	false	positives,	passive	acoustic	
monitoring,	semi‐automated	identification,	survey	methods
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set	is	unclear	to	most	users,	which	has	limited	the	use	of	automated	
identification	in	ecological	studies.	A	threshold	that	is	too	cautious	
could	lead	to	high‐generated	false	negative	rates	(i.e.	by	discarding	
a	 large	proportion	of	data	containing	 true	positives	below	a	given	
confidence	score),	which	could	result	 in	a	 lack	of	statistical	power.	
In	 contrast,	 a	 threshold	 that	 is	 not	 cautious	 enough	 could	 lead	 to	
high	false	positive	rates	(i.e.	fails	in	automated	identifications),	par-
ticularly	through	the	inclusion	of	records	of	species	which	are	most	
similar	acoustically,	which	involve	statistical	noise.	Moreover,	errors	
(generated	false	negative	rates	or	false	positive	rates)	could	also	be	
spatially	clustered	by	environmental	conditions	that	alter	the	quality	
of	the	signal	(Denzinger	&	Schnitzler,	2013),	which	potentially	induce	
statistical	 biases	 in	 relation	with	 confidence	measure	 provided	 by	
the	software.	False	positive	rates	and	generated	false	negative	rates	
thus	induce	different	caveats	for	which	there	is	not	a	unique	way	to	
set	confidence	thresholds.	Given	the	wide	range	of	taxa	for	which	
PAM	is	increasingly	being	used,	there	is	a	need	to	account	for	these	
caveats	using	a	method	generalizable	to	any	acoustically	surveyed	
taxa.

In	 this	study,	we	propose	a	method	for	assessing	 the	effect	of	
using	confidence	thresholds	in	acoustic	automated	identification	on	
the	detection	of	species	responses	to	environmental	variables.	This	
method	 can	 be	 applied	 to	 any	 acoustic	 taxa	 for	which	 automated	
identification	 software	 and	 acoustic	 signature	 knowledge	 are	 al-
ready	developed,	and	where	confidence	scores	are	provided.	Taking	
the	case	of	bats,	we	first	manually	checked	a	representative	sample	
of	a	 large	number	of	bat	 recordings	 identified	using	an	automated	
identification	software	 (Tadarida;	Bas	et	al.,	2017)	commonly	used	
in	bat	studies	(Barré,	Le	Viol,	Bas,	Julliard,	&	Kerbiriou,	2018;	Barré,	
Le	 Viol,	 Julliard,	 Chiron,	 &	 Kerbiriou,	 2017;	 Claireau	 et	 al.,	 2019;	
Pauwels	 et	 al.,	 2019;	 Pinaud,	 Claireau,	 Leuchtmann,	 &	 Kerbiriou,	
2018).	Using	this	sample,	we	then	modelled	the	 identification	suc-
cess	for	10	species	and	two	species	groups	of	bats	in	relation	to	the	
confidence	score	provided	by	the	software.	This	allowed	us	to	de-
fine	the	minimum	confidence	score	needed	to	ensure	a	given	false	
positive	 tolerance	 (FPT).	We	 then	examined	how	setting	different	
FPTs,	 from	50%	to	10%	maximum	false	positive	rate,	above	which	
data	are	discarded,	may	affect	a	statistical	inference	by	repeating	a	
large‐scale	analysis	of	 the	 response	of	 species	and	species	groups	
activity	to	five	environmental	variables,	and	looking	at	consistency	
of	the	results	among	FPTs.

2  | MATERIAL S AND METHODS

2.1 | Bat survey

We	used	an	acoustic	dataset	collected	previously	 to	 study	 the	ef-
fect	of	wind	turbines	on	bat	activity	(Barré	et	al.,	2018)	because	it	
was	 based	 on	 a	 random	 sampling	 design	with	 high	 variability	 and	
no	confounding	effects	in	terms	of	environmental	variables	(Figure	
S1).	The	following	environmental	variables	are	known	as	good	pre-
dictors	 of	 bat	 activity:	 type	of	 site	 that	 is,	 hedgerow	versus	 open	
area	habitat	located	at	an	average	of	86	m	(SD:	70	m)	away	from	any	

hedgerow	(Lacoeuilhe,	Machon,	Julien,	&	Kerbiriou,	2016;	Verboom	
&	 Huitema,	 1997),	 the	 distance	 in	 meters	 to	 a	 forest	 (M	 =	 700,	
SD	=	506;	Boughey,	Lake,	Haysom,	&	Dolman,	2011;	Frey‐Ehrenbold,	
Bontadina,	Arlettaz,	&	Obrist,	2013),	the	distance	to	an	urban	area	
(M	=	335,	SD	=	170;	Azam,	Le	Viol,	Julien,	Bas,	&	Kerbiriou,	2016),	the	
distance	to	a	wetland	(M	=	579,	SD	=	363;	Sirami,	Jacobs,	&	Cumming,	
2013;	 Santos,	 Rodrigues,	 Jones,	 &	 Rebelo,	 2013)	 and	 the	 total	
length	of	hedgerows	in	meters	within	a	1,000	m	radius	(M	=	3,439,	
SD	=	1,622;	Verboom	&	Huitema,	1997;	Lacoeuilhe	et	al.,	2016).	The	
latter	four	variables	presented	important	environmental	variability,	
and	a	similar	gradient	between	sites	located	close	to	hedgerows	and	
those	in	open	areas	(Figure	S1).

Bats	were	 recorded	 at	 337	 sites	 (one	 complete	 night	 per	 site,	
with	 207	 sites	 close	 to	 hedgerows	 and	 130	 sites	 in	 open	 area)	 in	
northwest	 France	 (Figure	 1)	 dominated	 by	 agriculture	 (82%)	 and	
forest	 (11%)	areas.	Recordings	were	 carried	out	over	23	complete	
nights,	recording	from	30	min	before	sunset	until	30	min	after	sun-
rise,	from	7	September	to	8	October	2016.

We	simultaneously	sampled	11–15	survey	sites	per	night	sepa-
rated	by	at	least	300	m	(Figure	1).	Echolocation	calls	were	recorded	
using	one	automatic	acoustic	recorder	per	site	survey	(Song	Meter	
SM2Bat+,	Wildlife	Acoustics	Inc.,	Concord,	MA,	USA).	The	detectors	
automatically	recorded	all	ultrasounds	using	predefined	settings	as	
recommended	by	the	French	bat	monitoring	program	 ‘Vigie‐Chiro’	
(trigger	level	set	to	6	dB	Signal	Noise	Ratio	and	set	to	continue	re-
cording	until	2.0	s	after	 last	 trigger	event,	384	kHz	sampling	 rate;	
for	further	details	see	Azam	et	al.,	2018;	Barré	et	al.,	2018;	Claireau	
et	al.,	2019;	Pauwels	et	al.,	2019).	Whilst	continuous	recording	is	typ-
ically	 used	 for	monitoring	 birds	 and	 several	 other	 species	 groups,	
for	bats	which	echolocate	at	high	frequency,	and	so	produce	heavy	
sound	files,	it	is	necessary	to	use	triggered	recording,	to	be	able	to	
manage	and	store	the	data	and	process	the	recordings.	In	addition,	
these	trigger	settings	are	very	sensitive	(6	dB	of	signal‐to‐noise	ratio)	
and	 detect	 the	majority	 of	 bats	which	would	 have	 been	 detected	
if	 recording	were	 continuous.	 As	 recommended	 by	Millon,	 Julien,	
Julliard,	 and	 Kerbiriou	 (2015),	 Kerbiriou,	 Azam	 et	 al.	 (2018)	 and	
Kerbiriou,	Bas	et	al.	(2018),	we	retained	one	bat	pass	per	5‐s	interval,	
which	is	the	mean	duration	of	all	bat	species	passes.

2.2 | Step 1: manual checking of a subset of the data

The	identification	process	performed	in	the	first	step	was	divided	
in	two	sub‐steps	(Figure	1).	In	the	first	sub‐step,	echolocation	calls	
were	detected	and	classified	to	the	closest	taxonomic	level	using	
the	Tadarida	software	 (Bas	et	al.,	2017)	 (hereafter	named	as	pri-
mary	identification),	which	assigns	a	species	and	confidence	score	
(continuous	 values	 between	 0	 and	 1)	 to	 each	 recorded	 bat	 pass	
(212,347	 in	 total).	 In	 the	 second	 sub‐step,	we	 selected	 a	 repre-
sentative	 sample	 by	 a	 stratified	 random	 sampling	 of	 25	 primary	
identifications	for	each	0.1	class	of	confidence	score	(i.e.	10	classes	
in	total)	for	each	species	and	groups	for	manual	checking,	except	
for	Rhinolophus	species	for	which	all	identifications	were	selected	
due	to	their	low	number.	We	performed	a	double	manual	checking	
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(KB	and	YB)	on	this	stratified	random	selection	of	1,910	bat	passes	
(hereafter	named	as	 checked	dataset	or	manual	 checking),	 using	
BatSound©	 software	 (Pettersson	 Elektronik	 AB,	 Sweden)	 and	
Syrinx	software	(John	Burt,	Seattle,	WA,	USA)	for	10	species	and	
two	groups	(Myotis	spp.	and	Plecotus	spp.)	 (Table	1),	by	visual	 in-
spection	 and	 measurement	 of	 discriminating	 characteristics	 of	
calls	on	spectrograms	(Barataud,	2015).	Species	groups	were	used	
for	genera	within	which	species	are	difficult	to	identify	from	one	
another,	except	for	one	species	of	Myotis	spp.,	Myotis nattereri,	for	
which	echolocation	calls	are	very	characteristic	(Barataud,	2015;	
Obrist	et	al.,	2004).	We	made	the	choice	to	separate	two	species	
which	are	commonly	grouped	because	of	their	frequency	overlap:	
Pipistrellus kuhlii and Pipistrellus nathusii.	We	manually	 separated	

these	 species	by	 combining	measurements	of	 energy	peak,	 final	
frequency,	call	duration,	bandwidth	and	time	between	calls	as	dis-
cussed	 in	Barataud	 (2015).	 In	 relatively	open	habitats	 like	 in	our	
study,	P. nathusii	emit	very	commonly	very	short	bandwidth,	and	
higher	frequencies	than	P. kuhlii	when	emitting	such	kind	of	calls	
(i.e.	quasi‐constant	frequency).	P. kuhlii	very	often	use	a	short	fre-
quency	modulation	at	the	end	of	the	call	and	this	is	very	rare	in	P. 
nathusii	calls.	Finally,	we	randomly	checked	500	sound	files	identi-
fied	as	not	containing	bats	to	assess	missed	bat	events.

We	assumed	that	manual	checking	provided	the	most	conserva-
tive	species	assignations,	which	allowed	us	 to	accurately	assign	 to	
each	primary	identification	a	true	positive	(i.e.	a	correct	automated	
identification	of	the	species),	a	false	positive	(i.e.	a	fail	in	automated	

F I G U R E  1  Schematic	and	
chronological	representation	of	the	steps	
used	to	study	the	relationship	between	
automated	identification	errors	in	acoustic	
data	and	the	detected	relationship	
between	bat	activity	and	environmental	
variables
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identification	of	the	species)	or	a	false	negative	(i.e.	defined	in	this	
study	 as	 a	 pass	 of	 the	 species	 automatically	 identified	 as	 another	
one)	in	the	checked	dataset.

The	 efficiency	 of	 the	 automated	 identification	may	 be	 spa-
tially	 heterogeneous	 due	 to	 habitat	 structure	 (Denzinger	 &	
Schnitzler,	 2013).	We	 tested	 for	 the	 dependence	 of	 false	 posi-
tives	 (i.e.	a	binomial	response	variable:	 failure	or	success	of	the	
automated	identification)	and	false	negative	ones	(i.e.	a	binomial	
response	 variable:	 automatically	 identified	 as	 another	 species	
or	correct	 identification)	on	 the	 five	 tested	environmental	vari-
ables.	We	performed	generalized	 linear	mixed	models	 (binomial	
response	variables;	logit	link)	with	the	environmental	variables	as	
explanatory	variables,	using	date	as	random	effect	to	control	for	
inter‐night	variations.

2.3 | Step 2: false positive rate modelling

The	success	probability,	defined	as	the	success	or	failure	of	the	au-
tomated	species	identification,	was	used	as	the	response	variable	to	
perform	generalized	linear	models	(binomial	response	variable;	logit 
link)	using	the	confidence	score	provided	by	the	automated	identifi-
cation	software	as	the	explanatory	variable	(see	step	2	in	Figures	1	
and	2).	Using	these	models,	we	could	predict	the	confidence	score	
corresponding	to	a	given	success	probability	of	the	automated	iden-
tification.	Thus,	predicted	confidence	score	constitutes	the	minimum	
one	required	to	ensure	a	given	false	positive	tolerance	(FPT,	i.e.	one	
minus	the	success	probability)	in	the	whole	dataset	(i.e.	including	all	
checked	and	non‐checked	primary	identifications;	Figure	1;	Table	2).	
We	selected	all	FPTs	starting	from	the	highest	acceptable	one	(0.5,	
i.e.	a	maximum	false	positive	rate	of	50%,	which	expected	to	give	an	
approximately	 balanced	 number	 of	 false	 negatives	 and	 false	 posi-
tives)	to	the	lower	one	(0.1,	i.e.	a	maximum	false	positive	rate	of	10%)	
by	0.1	classes	(i.e.	0.5,	0.4,	0.3,	0.2	and	0.1	FPTs).

2.4 | Step 3: data thresholding and consistency of 
model outputs regarding false positive rate

After	predicting	the	required	confidence	score	to	ensure	a	given	
FPT	in	the	automated	identification,	we	filtered	the	whole	dataset	
on	the	five	predicted	confidence	scores	corresponding	to	the	five	
FPT	 (see	 step	 3	 in	 Figures	 1	 and	 3;	 Table	 2).	 This	 allowed	 us	 to	
calculate	for	each	FPT	in	the	whole	dataset,	the	remaining	number	
of	bat	passes,	occurrences	and	an	estimation	of	false	positive	rate	
and	generated	false	negative	rate	by	reducing	the	FPT	(Table	2).	In	
order	to	assess	the	trade‐off	between	false	positive	rates	and	gen-
erated	 false	 negative	 rates	 generated	 by	 reducing	 FPT,	 for	 each	
FPT,	we	 estimated	 for	 the	whole	 dataset	 the	 false	 positive	 rate	
(i.e.	incorrect	primary	identifications)	and	generated	false	negative	
rate	(i.e.	as	a	consequence	of	discarding	true	positives	because	of	
reducing	FPT)	from	equations	used	to	model	the	false	positive	rate	
in	step	2.	For	each	bat	pass	BP	of	a	given	species	S,	we	first	com-
puted	the	probability	of	there	being	a	true	positive	(TP,	equation	1)	
and	a	false	positive	(FP,	equation	2)	as	follows:	

 

	where	a	corresponds	to	the	estimated	parameter	from	the	logistic	
regression	between	manual	checking	(i.e.	the	response	variable:	suc-
cess/fail	in	automated	identification;	step	2	in	Figures	1	and	2)	with	
the	confidence	score	provided	by	the	software	(i.e.	the	explanatory	
variable),	x	 is	the	confidence	score	of	the	bat	pass	provided	by	the	
automated	identification	software	and	b	is	the	intercept	of	the	logis-
tic	regression	(Figure	S2).

This	 allowed	 us	 to	 estimate	 the	 generated	 false	 negative	 rate	
(FNR,	Equation	3)	for	a	given	species	S	and	a	given	threshold	of	false	
positive	tolerance	FPT	in	the	whole	dataset,	by	averaging	all	prob-
abilities	to	have	a	true	positive	TP	from	bat	passes	BP	discarded	by	
reducing	FPT	(i.e.	between	the	targeted	FPT	and	the	maximum	FPT	
of	1)	as	follows:	

	where	n	is	the	total	number	of	bat	passes	BP	of	the	species	S.
We	 were	 also	 able	 to	 estimate	 the	 false	 positive	 rate	 (FPR,	

Equation	4)	for	a	given	species	S	and	a	given	threshold	of	false	pos-
itive	tolerance	FPT	in	the	whole	dataset,	by	averaging	probabilities	
to	have	a	false	positive	FP	from	bat	passes	BP	between	the	minimum	
FPT	(i.e.	zero)	and	the	targeted	FPT	as	follows:	

where	n	 is	the	number	of	bat	passes	BP	between	the	minimum	FPT	
(i.e.	zero	tolerance	of	false	positives)	and	the	targeted	FPT	of	a	given	
species	S.

Finally,	we	evaluated	the	automated	classification	efficiency	by	
drawing	 receiver	 operating	 characteristic	 (ROC)	 curves	 between	
confidence	scores	of	presences	and	absences	of	each	species,	and	
computing	area	under	curve	(AUC)	with	the	R	package	prroc	(Figure	
S3).

For	each	 species	and	species	groups,	we	 then	performed	gen-
eralized	linear	mixed	models	(GLMM,	R	package	lme4)	using	as	a	re-
sponse	variable	the	number	of	bat	passes	filtered	on	one	of	the	five	
FPTs	or	the	raw	number	of	primary	identifications	without	thresh-
olding	(i.e.	whole	dataset)	(six	GLMMs	in	total	performed	on	0.5,0.4,	
0.3,	0.2,	0.1	FPTs	and	on	the	whole	dataset).	Environmental	variables	
were	included	as	fixed	effects,	among	which	quantitative	ones	were	
scaled.	 According	 to	 the	 sampling	 design	 (i.e.	 11–15	 simultaneous	
recording	 sites	per	night),	we	 included	date	as	a	 random	effect	 to	
control	for	inter‐night	variation	in	weather	conditions	and	landscape	
context.	We	 applied	 a	 Poisson	 error	 or	 a	Negative	 binomial	 error	
distribution	 to	GLMMs	 in	order	 to	minimize	 issues	 in	 the	overdis-
persion	 ratio	 in	 models	 (i.e.	 as	 close	 as	 possible	 to	 1;	 Zuur,	 Ieno,	
Walker,	Saveliev,	&	Smith,	2009).	All	explanatory	variables	showed	

(1)TPBP,S=
exp (ax+b)

1+exp(ax+b)
,

(2)FPBP,S=1−TPBP,S,

(3)FNRS,FPT=

∑FPT=1

FPT
TPBP,S

nBP,S

,

(4)FPRS,FPT=

∑FPT

FPT=0
FPBP,S

nBP,S,FPT

,
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F I G U R E  2  Logistic	regressions	between	the	success	probability	and	the	confidence	score	of	the	automated	identification.	The	success	
probability	was	predicted	from	a	subset	manually	checked	assigning	a	success	or	a	failure	in	automated	identifications.	Horizontal	dotted	
lines	show	success	probabilities	in	automated	identification	used	for	thresholding	(i.e.	false	positive	tolerances:	0.5,	0.4,	0.3,	0.2	and	0.1)	to	
remove	data	in	the	total	dataset	below	the	corresponding	confidence	scores	(vertical	lines)



     |  9Methods in Ecology and EvoluonBARRÉ et Al.

TA B L E  2  Minimum	confidence	scores	needed	to	ensure	false	positive	tolerances	(step	2	in	Figure	1),	associated	changes	in	the	number	of	
bat	passes,	the	occurrence	(presence	rate	among	sites),	the	estimated	false	positive	rate	and	the	generated	false	negative	rate	estimated	for	
the	whole	dataset	(212,347	bat	passes;	step	3	in	Figure	1)

Species

False positive tolerance

Raw data 0.5 0.4 0.3 0.2 0.1

Barbastella barbastellus

Confidence	score / 0.119 0.133 0.148 0.167 0.195

No.	of	bat	passes 5,835 5,828 5,824 5,822 5,809 5,787

Occurrences 0.694 0.694 0.694 0.694 0.694 0.694

Estimated	false	positive	rate 0.003 0.002 0.002 0.002 0.001 0.001

Estimated	false	negative	rate 0 <0.001 <0.001 0.001 0.003 0.006

Eptesicus serotinus

Confidence	score / 0.180 0.200 0.221 0.246 0.285

No.	of	bat	passes 1,343 1,297 1,287 1,273 1,255 1,205

Occurrences 0.373 0.339 0.336 0.333 0.324 0.312

Estimated	false	positive	rate 0.044 0.022 0.019 0.015 0.012 0.006

Estimated	false	negative	rate 0 0.011 0.016 0.023 0.031 0.065

Myotis nattereri

Confidence	score / 0.229 0.271 0.317 0.373 0.458

No.	of	bat	passes 1,986 1,759 1,659 1,562 1,436 1,239

Occurrences 0.688 0.648 0.624 0.609 0.578 0.529

Estimated	false	positive	rate 0.136 0.081 0.064 0.049 0.034 0.021

Estimated	false	negative	rate 0 0.036 0.059 0.087 0.132 0.199

Myotis	spp.

Confidence	score / 0.212 0.250 0.291 0.341 0.416

No.	of	bat	passes 6,428 5,783 5,483 5,135 4,747 4,173

Occurrences 0.798 0.792 0.786 0.774 0.765 0.716

Estimated	false	positive	rate 0.145 0.092 0.073 0.054 0.038 0.024

Estimated	false	negative	rate 0 0.036 0.062 0.099 0.145 0.219

Nyctalus leisleri

Confidence	score / 0.286 0.342 0.402 0.476 0.587

No.	of	bat	passes 153 67 43 28 22 12

Occurrences 0.211 0.138 0.104 0.070 0.055 0.031

Estimated	false	positive	rate 0.502 0.305 0.222 0.149 0.115 0.075

Estimated	false	negative	rate 0 0.193 0.279 0.337 0.370 0.425

Nyctalus noctula

Confidence	score / 0.507 0.527 0.548 0.574 0.613

No.	of	bat	passes 395 61 50 41 29 22

Occurrences 0.220 0.080 0.067 0.058 0.046 0.040

Estimated	false	positive	rate 0.850 0.212 0.158 0.120 0.066 0.042

Estimated	false	negative	rate 0 0.029 0.044 0.054 0.082 0.097

Pipistrellus kuhlii

Confidence	score / 0.164 0.216 0.272 0.341 0.444

No.	of	bat	passes 28,588 28,456 28,305 28,077 27,737 26,854

Occurrences 0.899 0.899 0.890 0.884 0.881 0.875

Estimated	false	positive	rate 0.033 0.030 0.028 0.026 0.023 0.019

Estimated	false	negative	rate 0 0.002 0.005 0.010 0.019 0.045

(Continues)
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a	 variance	 inflation	 factor	 value	under	1.5,	meaning	 there	was	no	
strong	evidence	of	multicollinearity	(Chatterjee	&	Hadi,	2006).

We	then	compared	the	estimates	of	each	environmental	variable	
among	 fitted	models	 to	 check	 the	 consistency	 in	 the	 response	 of	
bats	to	environmental	variables	in	relation	to	the	different	FPTs.

3  | RESULTS

3.1 | Automated identification and manual checking

Over	 the	 23	 nights	 sampled,	 among	 the	 212,347	 bat	 passes	 re-
corded,	 167,504	 (79%)	 were	 assigned	 to	 Pipistrellus pipistrellus,	
28,589	 (13%)	 to	 Pipistrellus kuhlii,	 6,430	 (3%)	 to	Myotis	 spp.	 and	
5,835	(3%)	to	Barbastella barbastellus	(Table	1).	A	stratified	random	
sample	of	1,910	bat	passes	were	manually	checked	(Table	1).	False	

positive	rates	varied	a	lot	among	species,	from	0.0%	for	Rhinolophus 
ferrumequinum	 to	69.4%	 for	Nyctalus noctula	 (Table	1).	The	 largest	
number	of	errors	detected	in	manual	checks	was	for	N. noctula con-
fused	with	social	calls	of	P. pipistrellus	 (only	one	 location	 involved)	
and	non‐bat	noises,	and	calls	of	Pipistrellus nathusii	were	confused	
with	P. kuhlii, P. pipistrellus	and	non‐bat	noises	(Table	S1).	Concerning	
the	random	checking	of	500	sound	files	identified	as	non‐bat	by	the	
software,	we	found	that	three	(0.6%)	contained	bat	events.

3.2 | Checking for environmental biases in 
identification errors

Using	the	dataset	on	which	manual	checks	were	carried	out,	we	in-
vestigated	 a	 potential	 variation	 in	 automated	 identification	 errors	
due	the	environmental	variables.	The	probability	of	these	being	false	

Species

False positive tolerance

Raw data 0.5 0.4 0.3 0.2 0.1

Pipistrellus nathusii

Confidence	score / 0.668 0.756 0.853 0.971 /

No.	of	bat	passes 577 101 18 0 0 0

Occurrences 0.404 0.116 0.031 0.000 0.000 0.000

Estimated	false	positive	rate 0.623 0.437 0.370 / / /

Estimated	false	negative	rate 0 0.275 0.355 0.377 / /

Pipistrellus pipistrellus

Confidence	score / 0.000 0.000 0.000 0.000 0.096

No.	of	bat	passes 167,503 167,503 167,503 167,503 167,503 167,502

Occurrences 0.954 0.954 0.954 0.954 0.954 0.954

Estimated	false	positive	rate 0.007 0.007 0.007 0.007 0.007 0.007

Estimated	false	negative	rate 0.000 0.000 0.000 0.000 0.000 0.000

Plecotus	spp.

Confidence	score / 0.184 0.217 0.253 0.298 0.364

No.	of	bat	passes 1,352 1,229 1,185 1,129 1,034 909

Occurrences 0.615 0.599 0.596 0.596 0.584 0.544

Estimated	false	positive	rate 0.128 0.079 0.065 0.051 0.034 0.019

Estimated	false	negative	rate 0 0.034 0.053 0.080 0.131 0.211

Rhinolophus ferrumequinum

Confidence	score / 0.000 0.000 0.000 0.000 0.000

No.	of	bat	passes 41 41 41 41 41 41

Occurrences 0.046 0.046 0.046 0.046 0.046 0.046

Estimated	false	positive	rate 0.000 0.000 0.000 0.000 0.000 0.000

Estimated	false	negative	rate 0.000 0.000 0.000 0.000 0.000 0.000

Rhinolophus hipposideros

Confidence	score / 0.385 0.398 0.411 0.427 0.452

No.	of	bat	passes 128 117 116 116 116 113

Occurrences 0.113 0.107 0.104 0.104 0.104 0.104

Estimated	false	positive	rate 0.078 0.011 0.007 0.007 0.007 0.003

Estimated	false	negative	rate 0 0.018 0.022 0.022 0.022 0.199

TA B L E  2   (Continued)
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F I G U R E  3  Number	of	bat	passes	in	the	total	dataset	according	to	confidence	scores	provided	by	the	automated	identification.	Vertical	
lines	show	the	threshold	below	which	data	were	removed	to	ensure	a	given	false	positive	tolerance	(from	black	to	grey:	0.5,	0.4,	0.3,	0.2	and	
0.1)
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positives	was	significantly	affected	by	only	one	environmental	vari-
able	(habitat	type	of	survey	sites:	hedgerow	vs.	open	area)	and	for	
only	one	species,	N. noctula	(p	<	0.001;	Table	S2).	All	other	environ-
mental	variables	were	not	 found	to	affect	 the	probability	of	 there	
being	false	negatives	for	any	species	(Table	S3).

3.3 | False positive rate modelling

Success	 and	 failure	 in	 automated	 identification	 assessed	 through	
manual	checking	were	modelled	in	relation	to	the	confidence	score	
provided	by	the	software,	allowing	us	to	predict	the	required	con-
fidence	score	 to	ensure	a	given	FPT	 (Figure	2).	Confidence	scores	
required	to	ensure	FPTs	(i.e.	0.5,	0.4,	0.3,	0.2	and	0.1)	did	not	vary	
much	for	species	such	as	B. barbastellus	(0.12–0.20),	Eptesicus seroti-
nus	(0.18–0.29)	and	Rhinolophus hipposideros	(0.39–0.45),	but	more	
for	others,	 for	example	Nyctalus leisleri	 (0.29–0.59),	P. kuhlii	 (0.16–
0.44)	and	Plecotus	ssp.	(0.18–0.36)	(Table	2).	In	addition,	these	FPTs	
confidence	scores	were	lower	for	B. barbastellus, E. serotinus, P. kuhlii, 
Plecotus	 spp.	Myotis	 spp.,	 and	higher	 for	P. nathusii and N. noctula 
(Table	2).

For	P. pipistrellus,	errors	were	rare	thus	the	lowest	possible	con-
fidence	score	(0.096)	corresponded	to	a	FPT	lower	than	0.2.	In	con-
trast,	 for	P. nathusii,	 the	highest	 possible	 confidence	 score	 (0.971)	
corresponded	to	a	FPT	greater	than	0.1,	that	is	more	than	one	in	ten	
chance	of	 failure	 (Table	2).	Moreover,	no	errors	were	 found	 in	 the	
sample	for	R. ferrumequinum,	which	prevented	the	modelling	of	error	
rate	for	this	species	(Table	2).

Low	FPTs	 (i.e.	 removing	data	below	a	high	 confidence	 score)	
often	led	to	an	important	decrease	in	activity	measures	(Table	2).	
For	example,	Myotis	spp.	and	N. leisleri	activity	decreased	by	27.8%	
and	82.1%,	respectively,	between	0.5	FPT	and	0.1	FPT	(Table	2).	
However,	 such	 high	 decreases	 in	 activity	 resulted	 in	 a	 little	 de-
crease	 in	occurrence	 for	 these	 species:	6.7%	 for	 the	Myotis	 spp.	
group	and	10.7%	for	N. leisleri	(Table	2).	For	other	species,	the	ac-
tivity	and	occurrence	were	more	stable	across	FPTs,	including	for	
B. barbastellus, E. serotinus, P. kuhlii, Plecotus	spp.,	and	R. hipposid-
eros	(Table	2).

At	the	highest	FPT	(0.5),	the	estimated	false	positive	rate	was	
high	(>21%)	for	three	species	(N. leisleri, N. noctula and P. nathusii),	
and	very	 low	 (<5%)	 for	six	species	 (B. barbastellus, E. serotinus, P. 
kuhlii, P. pipistrellus, R. ferrumequinum and R. hipposideros)	(Table	2).	
However,	at	the	lowest	FPT	(0.1),	all	species	showed	an	estimated	
false	positive	 rate	 under	0.05,	 except	 for	N. leisleri	 (0.08)	 and	P. 
nathusii	for	which	no	data	satisfied	a	FPT	lower	than	0.1	(Table	2).

Estimating	 the	generated	 false	negative	 rate	 (i.e.	 true	positives	
discarded	by	 reducing	 the	FPT)	was	very	 low	 (<4%)	at	0.5	FPT	 for	
most	species	except	N. leisleri	 (0.19)	and	P. nathusii	 (0.28)	 (Table	2).	
This	rate	became	more	important	at	0.1	FPT,	with	null	values	for	P. 
pipistrellus and R. ferrumequinum;	with	very	low	values	(<10%)	for	five	
species	 (B. barbastellus, E. serotinus, N. noctula, P. kuhlii and R. hip-
posideros);	and	with	high	values	for	N. leisleri	 (0.425)	and	P. nathusii 
(0.377)	(Table	2).	The	average	AUC	from	ROC	curves	was	0.93	(range:	
0.73–1.00;	Figure	S3).

3.4 | Consistency of activity patterns across error 
rate tolerance gradient

To	study	the	 influence	of	confidence	score	thresholding	according	
to	FPTs	below	which	data	were	discarded	(i.e.	changes	in	amount	of	
data,	species	occurrence,	estimated	false	positive	rate	and	estimated	
rate	of	generated	false	negative),	modelling	of	the	bat	response	(i.e.	
the	number	of	bat	passes	according	to	selected	FPT)	to	environmen-
tal	variables	was	performed	at	all	FPTs.

When	comparing	model	outputs	from	naive	(i.e.	raw	data)	to	robust	
analyses	(i.e.	FPTs),	a	loss	or	a	gain	of	significance	was	occurred	for	the	
open	areas	versus	hedgerows	variable	for	N. leisleri,	the	distance	to	for-
est	for	Myotis	spp.	and	N. leisleri,	the	length	of	hedgerows	for	N. leisleri 
and	the	distance	to	urban	areas	for	N. noctula	(Table	3).	In	addition,	for	
significant	variables,	an	 inversion	of	the	direction	of	the	estimate	for	
the	open	areas	versus	hedgerows	variable	occurred	for	N. noctula and 
P. nathusii	(Table	3).	In	all	other	cases,	no	changes	were	found	(Table	3).

However,	we	 did	 not	 detect	 any	major	 changes	 in	model	 out-
puts	between	the	0.5,	0.4,	0.3,	0.2	and	0.1	FPTs	for	which	response	
estimates	 and	 standard	errors	 remained	highly	 stable	 (Table	3).	 In	
only	 two	 cases,	we	 detected	 a	 loss	 of	 significance:	 for	N. noctula 
with	 FPTs	 lower	 than	 0.2	 and	 0.3	 for	 the	 distance	 to	 forests	 and	
the	length	of	hedgerows	variables	respectively	(Table	3).	However,	
for	this	species,	the	open	areas	versus	hedgerows	variable	remained	
significant	and	highly	stable	at	all	FPTs	(Table	3).

All	species	had	at	least	one	significant	habitat	variable	response	
irrespective	 of	 the	 used	 FPTs,	 except	N. leisleri.	Hedgerows	 had	 a	
significantly	higher	bat	activity	(i.e.	number	of	bat	passes)	associated	
with	them	than	open	areas	for	seven	species	or	groups	(B. barbastel-
lus, M. nattereri, Myotis	spp.,	P. kuhlii, P. pipistrellus, Plecotus	spp.	and	
R. hipposideros)	and	a	significantly	lower	bat	activity	for	two	species	
(N. noctula and P. nathusii)	(Table	3).	We	also	found	a	significant	neg-
ative	relationship	between	bat	activity	and	(a)	the	distance	to	urban	
areas	 variable	 for	 two	 species	 or	 groups	 (E. serotinus and Plecotus 
spp.;	Table	3);	(b)	with	the	distance	to	forest	variable	for	two	species	
(N. noctula and R. ferrumequinum;	Table	3);	 (c)	with	the	distance	to	
wetlands	variable	 for	R. ferrumequinum;	 and	 (d)	with	 the	 length	of	
hedgerows	variable	 for	N. noctula, P. pipistrellus and R. ferrumequi-
num	(Table	3)	but	a	significant	positive	relationship	with	the	distance	
to	wetlands	variable	for	P. kuhlii	(Table	3).

4  | DISCUSSION

This	 study	 demonstrates	 that	 automated	 acoustic	 identification	
of	bats,	as	well	as	by	extension	all	other	 taxa	acoustically	 identifi-
able	 by	 software,	 coupled	with	 partial	manual	 checking	 and	 false	
positive	rate	modelling	(i.e.	semi‐automated	identification;	Newson	
et	al.,	2015),	 is	a	key	tool	for	 improving	reliability	of	studies	based	
on	acoustic	data.	Indeed,	robust	ecological	responses	could	be	pro-
duced	even	in	cases	where	false	positive	rates	were	so	far	consid-
ered	too	high	(Rydell	et	al.,	2017).	This	new	and	robust	framework	
takes	 advantage	 of	 confidence	 scores	 provided	 by	 the	 automated	
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identification	 software	 and	 its	 ability	 for	 distinguishing	 true	 posi-
tives	 and	 false	 positives	 (Figure	 S3),	 controlling	 for	 false	 positive	
tolerances	(FPTs),	and	checking	for	potential	biases	induced	by	iden-
tification	errors.

4.1 | Using confidence thresholding

Minimum	confidence	scores	required	to	ensure	a	given	FPT	accord-
ing	to	species	exhibited	low	to	moderate	variation	across	the	0.5	to	
0.1	FPTs	(Table	2).	To	investigate	the	effect	of	the	automated	identi-
fication	errors	on	bat	activity	patterns	in	relation	with	FPTs,	we	stud-
ied	the	response	of	bat	activity	to	several	environmental	variables	
known	to	 impact	bats.	Depending	on	species,	 the	most	significant	
responses	 to	environmental	variables	were	consistent	with	known	
patterns	 of	 bat	 activity:	 a	 negative	 effect	 of	 open	 areas	 versus	
hedgerows	and	of	decreasing	length	of	hedgerows	(Lacoeuilhe	et	al.,	
2016;	Verboom	&	Huitema,	1997),	 of	 distance	 to	 forest	 (Boughey	
et	 al.,	 2011;	 Frey‐Ehrenbold	 et	 al.,	 2013),	 to	 urban	 areas	 (Jung	 &	
Threlfall,	2016;	Mckinney,	2005)	and	to	distance	to	wetlands	(Santos	
et	al.,	2013;	Sirami	et	al.,	2013).

A	 comparison	of	 the	 relationship	between	environmental	 vari-
ables	 and	 bat	 activity	 between	 using	 the	 raw	 data	 (i.e.	 using	 the	
whole	dataset	regardless	of	the	confidence	score)	and	FPTs	selected	
data	 (i.e.	 removing	 data	 above	 defined	 FPT	 to	minimize	 the	 false	
positive	rate)	showed	some	discrepancies.	We	sometimes	found	op-
posite	 significant	 responses,	 for	example	 the	effect	of	open	areas	
versus	 hedgerows	 on	N. noctula and P. nathusii,	 when	 comparing	
results	 from	 raw	 data	 and	 FPTs	 (Table	 3).	 This	 demonstrates	 that	
analyses	conducted	on	raw	automated	identification	data	could	be	
severely	biased.	In	this	respect,	removing	data	above	a	0.5	FPT	(i.e.	
removing	data	with	a	low	success	probability)	is	essential,	in	accor-
dance	with	concerns	expressed	by	Russo	and	Voigt	(2016).

Logically	these	biases	due	to	false	positives	mostly	seem	to	im-
pact	uncommon	species	which	are	acoustically	similar	to	commoner	
ones.	Here	 the	most	 impacted	 species	 is	P. nathusii	which	 suffers	
from	a	high	false	positive	rate	due	to	the	local	abundance	of	P. kuhlii 
and P. pipistrellus	 (Tables	1	 and	2).	Consequently,	 an	 analysis	 con-
ducted	on	raw	automatically	identified	data	for	this	species	seems	to	
be	driven	by	the	response	of	the	two	other	Pipistrelles.

4.2 | Assessing robustness of ecological inferences

We	 assessed	 the	 robustness	 of	 ecological	 inferences	 by	 studying	
the	consistency	of	bat	responses	to	environmental	variables	among	
FPTs.	However,	for	P. nathusii	 it	was	not	possible	to	ensure	such	a	
robustness	due	a	lack	of	data	from	0.4	FPT	(Table	2).	This	framework	
thus	showed	that	this	was	not	possible	to	produce	robust	ecological	
inferences	 on	 this	 species	 due	 to	 a	 high	 false	 positive	 rate	 in	 this	
dataset.	 In	 addition,	 for	N. noctula,	we	 lost	 significance	 of	 the	 re-
sponse	 to	 the	distance	 to	 the	 forest	and	 the	 length	of	hedgerows	
from	0.2	 and	 0.3	 FPTs	 respectively	 (Table	 3).	 Such	 loss	 of	 signifi-
cance	could	be	linked	to	a	high	loss	of	bat	passes	and	occurrences	by	
reducing	the	FPTs,	or	linked	to	environmental	biases	affecting	spatial	Sp
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distribution	of	false	positive	or	generated	false	negative	rates.	Thus,	
given	the	uncertainty	about	the	mechanism	involved,	it	was	also	not	
possible	 to	 produce	 robust	 inferences	 for	 this	 species	 given	 high	
losses	of	bat	passes	and	occurrence,	and	high	estimated	false	posi-
tive	rates	by	reducing	the	FPTs	(Table	2).

At	the	other	end	of	the	spectrum,	the	estimated	false	positive	
rate	was	always	extremely	 low	or	even	zero	whatever	 the	con-
fidence	 score	 in	 the	 automated	 identification	 for	 P. pipistrellus 
and R. ferrumequinum	 (Table	1),	 thus	not	 raising	any	problem	of	
error	risk.

For	all	nine	other	species	or	species	groups,	15	of	the	18	signif-
icant	responses	to	environmental	variables	were	robust	with	a	high	
stability	of	model	outputs	while	 reducing	 the	FPT	 from	0.5	 to	0.1	
(Table	3).	In	addition,	despite	a	decrease	in	bat	activity	measures	due	
to	thresholding	at	FPTs,	the	occurrence	of	species	remained	highly	
stable	whilst	retaining	statistical	power	among	FPTs.	Our	study	thus	
demonstrates	 that	 using	our	 approach	many	ecological	 inferences	
could	be	robust	against	identification	errors.

4.3 | Survey recommendations and limitations

This	study	proposes	a	cautious	method	to	account	for	identification	
errors	 in	 acoustic	 surveys	 aimed	at	 studying	 the	 response	of	 bats	
in	relation	to	environmental	variables,	such	as	anthropogenic	pres-
sures,	without	the	need	for	exhaustive	checking	of	recordings.

The	FPT	of	0.5	is	a	threshold	for	which	false	negatives	and	false	
positives	 are	 expected	 to	 be	 approximately	 balanced.	 However,	
false	positives	are	more	likely	to	produce	biases	because	their	rate	is	
strongly	driven	by	the	activity	pattern	of	other	species.	In	contrast,	
the	FPT	of	0.1	minimizes	the	false	positive	rate,	but	at	the	cost	of	
losing	potentially	a	lot	of	data,	so	a	high	generated	false	negative	rate	
by	discarding	true	positives	(Table	2).	Rather	than	looking	for	a	pos-
sible	optimal	threshold,	we	recommend	that	researchers	systemati-
cally	check	the	consistency	of	responses	for	at	least	two	significantly	
different	 thresholds	 (e.g.	0.5	 and	0.1	FPTs),	 in	order	 to	 assess	 the	
robustness	of	the	results	and	only	going	on	to	conclusive	interpreta-
tion	when	these	are	consistent.

A	 lack	of	 consistency	 is	most	 likely	 to	occur	 for	 rare	 species	
with	very	low	abundance/occurrence,	and	for	uncommon	species	
which	are	acoustically	similar	to	commoner	ones	such	as	P. nathusii 
here	which	 is	acoustically	similar	to	P. kuhlii	 (Obrist	et	al.,	2004).	
The	efficiency	of	 the	 automated	 identification	of	P. nathusii and 
N. lesleiri	was	lowest	(AUC	of	0.73	for	both;	Figure	S3)	due	to	par-
ticular	context	of	the	study	where	these	species	were	much	rarer	
than	 their	 acoustically	 closest	 relative	 (P. kuhlii and E. serotinus, 
respectively;	Table	1).	For	these	species,	either	systematic	manual	
checking	 or	 an	 important	 improvement	 in	 automated	 identifica-
tion	 efficiency	 is	 needed	 to	 conduct	 robust	 analyses.	 However,	
our	framework	of	error	rate	modelling	is	already	sufficient	to	ef-
fectively	 identify	 these	 problematic	 species	 and	 should	 prevent	
users	of	automated	identification	to	draw	conclusions	that	are	not	
robust.	 In	addition,	another	prerequisite	for	drawing	robust	con-
clusions	from	this	framework	is	to	ensure	that	error	types	(i.e.	false	

negatives	and	false	positives)	are	not	correlated	with	the	variables	
tested	in	the	study.	In	our	study	case,	we	only	detected	one	signifi-
cant	dependence	for	the	open	area	versus	hedgerows	for	the	false	
positives	of	N. noctula	(Table	S2).	For	this	species,	automated	iden-
tification	was	more	efficient	(i.e.	lower	number	of	false	positives)	
for	 survey	 sites	 located	 in	 open	 areas	 than	 close	 to	 hedgerows	
where	calls	are	more	difficult	 to	 identify	due	to	frequency	mod-
ulation	 (Barataud,	 2015;	Obrist	 et	 al.,	 2004).	 It	 is	 not	 surprising	
that	the	false	positive	rate	of	a	rare	species	like	N. noctula could be 
influenced	by	local	habitat	type	because	this	variable	is	expected	
to	have	different	effects	on	other	species,	and	thus	influence	false	
positive	rate	through	the	relative	density	between	N. noctula and 
other	bat	species.	Thus,	we	expect	a	bias	in	the	measure	of	activity	
towards	 open	 areas	 in	 this	 case.	 Hence,	 the	 significant	 positive	
response	 of	 this	 species	 to	 open	 areas	 compared	 to	 hedgerows	
should	be	considered	unreliable	to	make	any	ecological	inference	
(Table	3).

This	method	can	be	applied	to	any	ecological	studies	with	stan-
dardized	sampling	but,	of	course,	cannot	help	for	surveys	where	no	
error	can	be	tolerated,	for	example	for	producing	species	 invento-
ries	for	protected	species,	as	required	for	environmental	impact	as-
sessments	(Russo	&	Voigt,	2016).	However,	in	this	case,	automated	
identification	can	still	 indicate	what	bat	passes	should	be	manually	
checked	 in	order	 to	 identify	 species	presence	at	 the	 site	 scale,	by	
selecting	passes	with	the	highest	confidence	scores,	and	thus	saving	
time	for	the	user.

Finally,	the	proposed	method	can	be	applied	to	any	acoustic	taxa	
for	which	automated	identification	software	is	developed	and	where	
confidence	scores	are	provided.	A	crucial	advantage	of	this	method	
is	 that	manual	 checking	of	 a	 relatively	 small	 subset	of	 the	dataset	
(<1%	in	this	study)	is	sufficient	to	assess	error	rates	associated	with	
species	identification.	This	is	especially	true	given	that	checking	all	
data	is	very	time‐consuming	and	virtually	impossible	for	such	a	large	
dataset.
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